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Abstract

Presented here is a signal decomposition method for extracting boundary effects from an operational deflection shape
(ODS) of a structure under harmonic excitation. It decomposes an ODS into central and boundary solutions using a
sliding-window least-squares curve-fitting technique, and the boundary solutions can be used to reveal damage loca-
tions, and the central solutions can be used to identify boundary conditions. Except an experimental ODS the method
requires no model or historical data for comparison. Exact mode shapes and ODSs of beams with damage are obtained
by spectral element analysis. Boundary and central solutions caused by different boundary conditions, different loading
conditions, and different damage with or without noise are simulated and characterized. Numerical results show that
Gibbs’ phenomenon caused by the use of continuously differential functions to fit ODSs with discontinuous first-,
second-, and/or third-order derivatives actually makes boundary solutions excellent damage indicators. Several
experiments are performed using a scanning laser vibrometer for sensing and a lead zirconate titanate (PZT) patch for
actuation. The experimental results confirm the feasibility and accuracy of this boundary effect detection method in
detecting multiple defects and identifying boundary conditions of beams.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Several dynamics-based structural health monitoring methods have shown the capability of detecting the
existence of defects in structures (Doebling et al., 1996). However, locating and estimating defects in
structures remains a challenging issue, especially locating small defects without historical data or an
accurate structural model with known boundary conditions.

It is well known in the literature that using structural dynamic responses to locate small defects requires
the use of high-frequency deflection shapes, i.e., deflection shapes with high local curvatures. Unfortunately,
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to obtain high-frequency deflection shapes requires spatially dense and accurate measurements in order to
reduce spatial aliasing in signal processing. A scanning laser vibrometer provides a unique solution to the
spatial aliasing problem because of its non-contact, remote, large-area scanning, dense, high-frequency
bandwidth, and accurate measurement capabilities. However, even if a scanning laser vibrometer is avail-
able, how to extract clear damage signals from the large amount of dynamic response data obtained from a
scanning laser vibrometer is another challenging issue.

Actual boundary conditions of a built-up structure are usually difficult to determine (Wang and Chen,
1996; Lee and Jeon, 1999). Even for some simple structures it is difficult to determine appropriate boundary
conditions. For example, a simply supported boundary of a beam is difficult to be realized in experiment.
The simply supported boundary becomes similar to a clamped end if the supporting force is too large, and
sliding and jumping with friction becomes a difficult non-linear problem if the supporting force is too small.
A clamped end is usually considered to be easy to setup in experiment. But, if the clamping force is too
large, the boundary effects deviate significantly from the ideal ones because of cross section warpings.
Moreover, sometimes boundary points of a structure are not accessible or only a few points close to a
boundary can be measured. Hence, identification of actual boundaries of an existing structure is important
and challenging. However, very few studies have been performed on the identification of actual boundary
conditions although it is important in the assessment of aging structures or structures after natural disasters
(e.g., earthquakes and tornados).

Pai and Jin (2000) derived a boundary effect detection (BED) method that can locate small structural
defects by using operational deflection shapes (ODSs) measured by a scanning laser vibrometer. The BED
method works without using historical data; it uses a sliding-window least-squares curve-fitting technique
to extract boundary solutions from an ODS to reveal defect locations. Experiments have been performed to
verify the capability of the BED method in locating surface slots, edge slots, surface holes, internal holes,
fatigue cracks, and stiffened sections (Pai and Jin, 2000; Pai and Young, 2001; Jin and Pai, 2000). Numerical
and experimental results show that the BED method seems more sensitive and reliable than other
dynamics- or deformation-based methods. However, some questions about the BED method remain to be
answered and some limitations need to be eliminated.

This work is (1) to explain why the damage detection curves obtained from the BED method show
certain strong characters that can be used to reveal multiple damage locations, (2) to extend the BED
method for detecting defects around boundaries and for identifying structural boundary conditions, and (3)
to experimentally verify this improved BED method.

2. Measurement of operational deflection shapes

Fig. 1 shows the experimental setup used in measuring ODSs of a structure. An ODS is defined in this
work as the deflection shape of a structure when it is subjected to a single-point or multiple-point or
distributed harmonic excitation at one frequency. A Polytec PSV-200 scanning laser vibrometer is used to
measure the velocities of equally spaced points over the structure when the structure is subjected to a
harmonic excitation from an actuator, such as a lead zirconate titanate (PZT) patch integrated with the
structure (as shown in Fig. 1) or an external electromechanical shaker. The PZT patch used here is a
QuickPack QP10N actuator purchased from ACX, Inc. The QuickPack actuator packages piezoceramics in
a protective polyimide coating with pre-attached electrical leads. It is a 2" x1"x0.015" patch with a
1.81"x0.81" x0.010" piezo wafer, and the maximum allowable operating voltage is 200 V.

The PCB-790 power amplifier magnifies, by 20 times, the sinusoidal voltage from the HP-33120A 15
MHz function generator and sends it to the PZT patch. The OFV-3001-S vibrometer controller controls the
rotation of the two mirrors in the OFV-055 scan head and the scanning of the laser beam, and it receives the
interferometry created by the backscattered laser beam and the reference laser beam in the OFV-303 sensor
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Fig. 1. The experimental setup for measuring ODSs of a structure using a PSV-200 scanning laser vibrometer for sensing and a PZT
patch for actuation.

head. The output voltage from the HP-33120A function generator is also used as the input signal to
Channel A of the OFV-3001-S vibrometer controller. The OFV-3001-S controller includes two indepen-
dently programmable low-pass filters for filtering the signal from the HP-33120A function generator and
the signal from the OFV-303 sensor head, respectively. After filtering, these two signals are sent from
Channels A and B of the controller to the 400 MHz computer system, which is operated by the Windows
NT and processes the measured data. The video control box controls the swiveling and tilting of the OFV-
055 scan head and the focusing of the video camera in the OFV-055 scan head. A standardized composite
video signal from the camera is passed via a BNC connection on the video control box to the video input
of the computer system.

To obtain experimental ODSs we first perform an “FFT” acquisition to obtain frequency response
functions (FRFs) of all measurement points using a periodic chirp excitation, and then we choose an
isolated natural frequency or any other frequency from the averaged FRF. After that we perform a “FAST
SCAN” acquisition using a single-frequency excitation at the chosen frequency to obtain the corresponding
ODS.

The noise level of the measured ODSs is primary determined by the frequency bandwidth B,, used in the
“FAST SCAN” acquisition. The noise level is proportional to 1/B,,. However, the minimum bandwidth is
limited to 0.02% of the excitation frequency, and the data acquisition time increases when B, decreases.
Hence the noise level of high-frequency ODSs obtained using the “FAST SCAN”’ acquisition can be high.
However, the noise level of all ODSs obtained in this study is estimated to have a standard deviation below
0.1% of the maximum value of the corresponding ODS.

The velocity profile obtained from a scanning laser vibrometer is based on the assumption that the
vibration period of each measurement point is the same. If the vibration is periodic with a known period T
and the recording at each location is triggered to start at nT (n is an integer) after the beginning recording
time of the previous measurement point, the velocity profile at ¢ = f; can be obtained by connecting the
measured velocities of all measurement points at #,. If the vibration consists of harmonics that are not
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commensurable or unknown non-linear coupling exists, the ODS cannot be measured using a scanning
laser vibrometer because the period 7 is unknown. For such cases, one need to use a 3D motion analysis
system, which measure the instant locations of all measurement points simultaneously and hence the ob-
tained ODSs are the true ODSs. However, the maximum number of measurement points of such systems is
limited and the maximum sampling frequency is 2000 Hz or less. Hence, high-order ODSs cannot be
measured using such systems.

3. Analysis of imperfect beams

Here we show how to obtain numerical dynamic characteristics of a beam with damage and/or imperfect
boundary conditions. Fig. 2(a) shows a beam having a rectangular cross section, a symmetric open crack at
x = a, and clamped-supported boundary conditions. If the beam is modeled as three beam segments, the
corresponding equation of motion can be derived to be

[EIW']" + &w + miv = f(x,1) (1)

where

And, boundary conditions are given by
w(0,¢) = w(0,¢) =0, uw(L,t) — Em"(L,t) = 0, oW (L, t) + EW'(L,t) =0 (3)

Here w is the transverse displacement, £ Young’s modulus, / the area moment of inertia of the intact beam,
I —I(= 1) the area moment of inertia of the slotted segment, 7 the mass per unit length, ¢ the damping
coefficient, w = Ow/0Ox, w = 0w/0t, ¢ the time, A4 the cross sectional area, u(x — a) a unit step function, /4 the
beam thickness, b the beam width, e the crack depth, ¢ the crack width, and f'(x, ¢) is the distributed external

Fig. 2. A clamped-supported beam with a symmetric open crack: (a) the system and (b) a simplified model.
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load. Moreover, L is the beam length, 7, is the linear spring constant, and 7, is the torsional spring constant
of the springs at x = L. Eq. (1) can be rewritten as

EIW® + &w + miv = EIW'[u"(x — a) —u"(x —a — ¢)] + 2EIW"[u (x — a) —u/ (x —a — ¢)]
+ EIwW"[u(x — a) — u(x —a — ¢)] + f(x, 1) (4)
Because /(x — @) = 6(x — a) (the Kronecker delta function) and u”(x — a) = §'(x — a), Eq. (4) shows that
the forced damped vibration of a beam with a slot is equivalent to an intact beam subjected to two con-
centrated bending moments E/w”(a") and —EIw"(a + ¢~), two concentrated shear forces 2EI/w" (a*) and

—ZEiw”’(a +¢7), one distributed force EIw" between x =a and x = a+ ¢, and the externally applied
distributed load f(x,¢) (Thomson, 1949; Man et al., 1994).

3.1. Dynamic characteristics

The ith mode shape ¢, is the free undamped deflection shape harmonically vibrating at the ith natural
frequency w; and is given by

2\ 174
¢,(x) = €1 cos Bx + & sin fx + &3 cosh fx + ¢y sinh fix, B, = <’”E”; ) (5)

where the coefficients ¢; are determined by boundary conditions and f3; is determined by the corresponding
frequency equation. To obtain ¢, and w; one can model the damaged beam shown in Fig. 2(a) as three
beam segments and use boundary conditions and the continuity of displacements, slopes, bending mo-
ments, and shear forces at the two joints. If the ¢,(x) is normalized with respect to m to be

[ wseac=, "

the FRF H,,, for the response w(x,,,?)(= W (x,)e*) due to a harmonic excitation f(x,¢) = Fyd(x — x,) ¥
can be derived to be (Inman, 2001)

xm = n)
Hﬂl" 7
) ; w? Qz + 2C ;2] @)

where Q is the excitation frequency, j = v/—1, and {; is the modal damping ratio for the ith mode. However,
this is an indirect approach because all mode shapes and natural frequencies need to be obtained first and a
summation of infinite terms is needed. Another way to obtain FRFs is to derive a finite element model first
and then use the obtained mass ([M]), damping ([C]), and stiffness ([K]) matrices to compute the FRF
matrix [H] as [H] = [-Q*[M] +jQ[C] + [K]]”'. However, this approach is also indirect and it is not accurate
in predicting high-frequency FRFs, bending moments, and shear forces because of the approximate,
polynomial shape functions used in finite element modeling. Hence we are going to use the spectral element
method (Doyle, 1989; Lee and Lee, 1997, 1999) to obtain natural frequencies and mode shapes and directly
compute FRFs and ODSs of beams with damage and/or non-ideal boundary conditions.

An ODS is different from a mode shape. However, if ¢ is constant and f(x,¢) = F(x) sin(w;¢) with
F(x) = ¢,(x), the distributed excitation force is exactly balanced out by the distributed damping force and
the ODS is the same as the free vibration mode shape ¢,. If the beam is subjected to a periodic excitation
f(x,t) = Fyd(x — x,) %, w(x,t) = W(x)e. And, for a uniform section of the beam that is free of loads,
damage and damping, the ODS W(x) is given by
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sz 1/4

W (x) = ¢y cos fx + ¢; sin fx + c3 cosh fix + ¢4 sinh fix, f = (W) (8)

Of course W (x) is a function of Q also; however, we use W (x) instead of W (x, 2) to simplify the expressions.
Egs. (7) and (8) show that

W(X) _ i Fb¢i(x)¢i(x’1) (9)

2 2
PO

Egs. (8) and (9) indicate that, when Q is not close to an isolated natural frequency, the ODS may consist of
multiple mode shapes but the ODS is still a normal mode. Experimental results show that, even when F'(x)
is different from a mode shape but the excitation frequency is close to the ith natural frequency, the ODS is
still dominated by the ith mode shape. However, Egs. (7) and (9) show that, when damping is significant,
the ODS is very possible a complex mode if Q is not close to an isolated natural frequency. In such cases,
the ODS actually consists of several mode shapes and the nodes are traveling (Nayfeh and Mook, 1979; Pai
and Lee, 2003). If there is no non-linear effects (e.g., non-linear modal coupling and energy transferring to
low-frequency modes), the complex mode still vibrates at the excitation frequency 2 but the deflection
shape periodically change with time.

3.2. Spectral element analysis
If three two-node beam elements are used to model the beam shown in Fig. 2(a), because w; = w(—1,1),
0, =w(=1,t), w, =w(l,t) and 0, = w(/,¢) for the first element, one can use Eq. (8) to derive that,
W(X, I) =N (X)W1 + N, (x)@l + N3 (X)W2 + N4(X)92 (108_)
where — <x </, the elemental beam length is 2/, and

_sinh f/ cos fx + sin I cosh fx 4= cosh i/ sin fx + cos ! sinh px

N] ()C) dl d2
cosh 8/ cos fx — cos Bl cosh fx  —sinh fIsin fx + sin B/ sinh fx
M(x) = bd, + Bds
sinh 8/ cos fx + sin / cosh fx  cosh I sin fx — cos B/ sinh fx (10Db)
N3 (x) = d] + d2
—cosh ffl cos fx + cos flcosh fx  —sinh S/ sin fx + sin ! sinh fx
Nl = i ! b,

dy = 2(sin pl cosh I + cos fl sinh ), d, = 2(sin pl cosh pl — cos Sl sinh fi)

Because the bending moments M; and shear forces V; at the left (i = 1) and right (i = 2) nodes of the first
beam element are related to w as

Vi = EW'"(~1,1), M, =—EW'(=1,1), Vh=—EW"(L1), M, =EW(1) (11)

we obtain from Eqgs. (10) and (11) that

" wi ki ko ks ks
M, 0 _ ko kn kx ks

=k k| = 12¢
123 ] wy [’ [ kiy ks ks ke (122)

M, 0, LSV YRR <VRR o)
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where

ki1 = k33 = —Dof*(cos 2l sinh 281 + sin 2/ cosh 2 1)

kiy = —k3y = —Dyf sin 21 sinh 25/

ki3 = Dof*(sin 21 + sinh 281)

k14 = —ks3 = DoP(cos 2l — cosh 281) (12b)
kay = kgg = Do(cos2pIsinh 21 — sin 28 cosh 23])

kas = Dy(sin 2] — sinh 231)

Dy = EIf$/(cos2flcosh2pl — 1)

The coordinate transformation for transforming the elemental dynamic stiffness matrix [k] and the assembly
of global dynamic stiffness matrix [K] are the same as those used in conventional finite element modeling.
Both [k] and [K] are symmetric. We note that the [k] will be singular when cos 23/ cosh 25 = 1. In that case,
one can choose a different elemental length. Because the beam in Fig. 2(a) is modeled using three elements,
we have

Kla} = (F) ")
{q} = {le01;W2702;W37037W4704}T; {F} = {I/llea V25M27 V37M3; V4)M4}T

If the right end of the beam shown in Fig. 2(a) is free, the external forces and moments on the nodes are
h=My=V=My;=V,=M;=0 (14)

and 7 agld M, are unknoivn. Using the boundary conditions w; = 0; = 0 to reduce the [K] into a 6x6
matrix [K] and then use | [K] |= 0 to determine natural frequencies and mode shapes. The FRF matrix [H]
can be obtained as [K]™'.

4. Extraction of boundary effects

To extract boundary effects from an ODS we improve our previous approach (Pai and Jin, 2000) by
separating left and right boundary conditions. For an ODS of the entire beam, we have

W (x) = ¢y cos fix + ¢, sin ffx + ¢; cosh ffx + ¢4 sinh fx

. . . . c3tceq L c3—c¢
= ¢, coS fix + ¢y sin fx + &3¢/ + ¢4 e, (:35%, c;;z% (15)

It is apparent that, when f is large, ¢; e/ (= ¢;e P & = ¢;ef!) decays toward zero at x = 0 and ¢,e
decays toward zero at x = L. Hence, these two terms are right and left boundary solutions, and the first two
terms are called central solutions.

For a large structure, measuring an ODS of the entire structure using one measurement setup is difficult,
and it is more practical to measure and process the ODS of a local small area at each time. Hence, we will
use a sliding-window least-squares curve-fitting method and a moving coordinate X (= x — x,,, X, is the
location of the point under observation) for processing a local ODS to extract boundary solutions. Hence
we rewrite Eq. (15) as
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W(x) = ¢1 cos(px, + fx) + ¢ sin(Px,, + fX) + 3 cosh(px,, + fx) + ¢4 sinh(fx,, + fx)
= C) cos(fx) + Cysin(fx) + C; cosh(px) + C4 sinh(fx)
= C; cos(Bx) + Cosin(Bx) + C3e + Cye ™
where
Ci =/ +A3cos(Px, — P), Cr=—1/ct+3sin(Px, — ¢), tang = @

C1

Cy =/ + Geosh(Bx, +V), Ca=1/A+cEsinh(Bx, +y), tanhy = ?

3
~  C3+C ~ G —C R S A
C3E%, C4E%, Ci=C3+Cyy, C=C—Cy

(16)

(17)

To find the coefficients C;(i = 1,2, 3,4) for the point at x = 0 (i.e., x = x,,) we use the data points around
X = x,, to minimize the fitting error. If W, denotes W (x;) and ¥; denotes the experimental data at x;, we define

the fitting error E,; as

N

Error = Z OC,-(VV,- - Yz)z

=N

1 1 1 1 1 1 1 1 1 ]
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
x/L

Fig. 3. The eighth mode shape of a 22" x 1" x0.25" cantilever with a crack having a + ¢/2 = L/2, ¢ = 0.039” and 2e = 0.4h.

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

(18)

Fig. 4. The 2100 Hz ODS, W), and seventh and eighth mode shapes, ¢, and ¢, of the 22" x 1" x0.25" cantilever with a symmetric

center crack.
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Fig. 5. The 2100 Hz ODS, W, and its derivatives of the 22" x 1" x0.25" cantilever without crack: (a) an external force at x = 10.981”,
(b) an external moment at x = 10.981”, and (c) ODSs obtained using Eq. (9) (dotted lines) and spectral elements (solid lines) with an

external force at x = 10.981".

where the total number of points used is 2N + 1, and «; is a weighting factor. In this work, we choose

to use

1
o =

The four equations to determine C; for the point at X = 0 are given by

ZZa,W, YaW 0, j=1,2.3,4

1+ 99i/N]

6C
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Fig. 6. Central and boundary solutions of the eighth mode shape of the 22"x1"x0.25" cantilever with a symmetric center crack
obtained using two separate curve-fitting processes for 0 <x<L/2 and L/2<x<L: (a) C; and Cy, (b) C, and Cs, (¢) C4, and (d) C;.

After C; are determined, one can obtain W, W', W”, and W" for the point at x = 0 by using the following
equations:

W(0)=C,+Cs=C, + Cs+ Cy
W(0)/f=Cy+Cy=Cr+ Cs— C4
W'(0)/f* =—Cy 4+ C3 = —Cy + Cs + C4
W"(0)/ = —Cy+Cs=—Cy+ C3— C4

From Egs. (16) and (21) we know that C| represents the central solution of displacement (at x = x,,), C;
represents the boundary solution of displacement caused by boundary constraints, C,f represents the
central solution of slope, and C,f represents the boundary solution of slope. Moreover, C; and C; also
separate " into central and boundary solutions, and C; and Cy also separate W" into central and
boundary solutions. Furthermore, C; represents the boundary solution caused by the boundary constraint
at x = L, and C, represents the boundary solution caused by the boundary constraint at x = 0. In other
words, solving the four algebraic equations in Eq. (20) results in answers for the four unknowns W (0),
w'(0), w"(0), and W' (0) with each one being decomposed into two (or three) parts, as shown in Eq. (21).
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Fig. 7. Central and boundary solutions of the eighth mode shape of the 22" x 1" ><0.2§i/ cantilever with a symmetric center crack
obtained using one curve-fitting process for 0 <x < L: (a) C; and Cy, (b) C; and Cj, (¢) Cy4, and (d) C;.

It follows from Egs. (21) and (8) that the maximum elastic energy per unit length, II, is given by
1 = Ew"(0)* = 1EI(Cy — C\)* B = ImQ*(Cs — C1) (22)

Moreover, under steady-state harmonic vibration the maximum kinetic energy per unit length, K, is given
by

K =im(W(0)Q)" = Im@*(Cx + C1)’ (23)
Hence it follows from Eqgs. (21)-(23) that the difference between these two energy densities is

K—-1II ~ ~

———=CC=CC;+CC 24

P 1G5 103 1G4 (24)

which shows that C;Cj; is proportional to K — II. It follows from Eq. (24) that, if f§ is large, the boundary
solution C; should be zero and hence K — IT = 0 at a point away from boundaries. Because a small damage
to a beam introduces a new boundary point to the structure, this is a phenomenon useful for identifying
damage locations. Moreover, it can be shown that the integral of K around a boundary point is equal to the
integral of IT around the same boundary point (Pai and Young, 2001). In other words, the kinetic energy is
locally balanced by the elastic energy, i.e.,

/X+Az (K B H) dr— 0 (25)

X—4
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Fig. 8. CentrAal and bounAdary solutions of the 2100 Hz ODS without crack but an external force at x = 10.981": (a) C, and C,, (b) C;
and C;, (¢) C4, and (d) C;.

where x = X is the location of a boundary point, and 4; can be determined by examining the distribution of
K—MN.IftX = A, = A, = L/2is used, it is always true for any intact or damaged beam. In other words, one
can check the energy balance within a local area of a large structure to estimate the degree of damage,
without knowing the deformation of the whole structure or the system boundary conditions.

The sectional standard deviation (SSD) and standard deviation (SD) of the fitting process can also be
used to monitor the accuracy of curve-fitting and hence reveal damage locations. The SSD is computed as

wspy VP ()~ YE)F/N + 1)

26
Wmax ( )

where W.x denotes the maximum of . The overall standard deviation SD is computed after the C; for
every point on the beam are obtained, and it is computed as

VM () — Y () /M
Wmax

SD =

(27)

where M is the total number of points measured along the beam.
The wavenumber f in Eq. (16) needs to be estimated before using the linear sliding-window least-squares
method shown in Egs. (18)—(20). To determine the wavenumber f for a high-frequency deflection shape one
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Fig. 9. Cent@l and bounglary solutions of the 2100 Hz ODS without crack but an external moment at x = 10.981”: (a) C; and Cj, (b) C;
and C;, (¢) C4, and (d) C;.

can plot the experimental ODS, pick up a length L covering n times of the wavelength /, and obtain
p=2nn /Z. For a low-frequency deflection shape, it is difficult to obtain an accurate estimation of  from
the ODS using this approach, but one can use a non-linear curve-fitting method to improve the estimation
of f# (Pai and Jin, 2000). Numerical and experimental results show that the proposed method for extracting
boundary solutions requires an accurate estimation of f§ only if it is a high-frequency ODS. However, if the
estimated f§ is not accurate, the sectional standard deviation and boundary solutions will show periodic
change. Hence, it is easy to know whether the estimated /3 is correct, and, if necessary, one can revise the
estimation and rerun the signal processing.

5. Numerical simulations

Next we perform numerical simulations of dynamic characteristics, ODSs, damage detection, and
identification of boundary conditions of beams.

5.1. Dynamic characteristics

We consider the beam shown in Fig. 2(a) with L =22", b =1", h =0.25",a4+¢/2=L/2,¢ = 0.039", e =
0.2A, Young’s modulus E = 10.6 x 10° psi, Poisson’s ratio v = 0.33, and a mass density p = 5.37 slug/ft>.
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Fig. 10. Central and boundary solutions of the 2100 Hz ODS without crack but an external moment —M at x = 10” and an external
moment M at x = 12”: (a) C; and Cy4, (b) C; and Cj, (¢) Cy4, and (d) C;.

Moreover, we consider clamped-free boundary conditions, i.e., 7; = 7, = 0. Using the spectral element
method shown in Section 3.2 we obtain the first 10 natural frequencies to be 16.859, 105.18, 296.22, 577.25,
959.57, 1425.6, 2002.1, 2651.1, 3423.7, 4253.8 Hz. Fig. 3 shows the eighth ¢, ¢', ¢", and ¢, where there is
no data point representing the slotted segment because the slot width c is so small. We note that ¢’ and ¢"
are discontinuous at x = L/2, but ¢ and ¢" are continuous; however, the discontinuity of ¢" is small. The
discontinuity of ¢’ is mainly due to the action of the two concentrated moments at x = @ and x = a + ¢, as
shown by Eq. (4). The discontinuity of ¢" is due to the action of the distributed load between at x = a and
x = a + ¢ caused by the inertia force, as shown by Eq. (4). In other words, if the crack width ¢ is very small,
we have

wla)=wla+c"), w@)#wa+c), wia)=w'(a+c),

28
Wl//(af) 7& W/l/(a + C+) ( )

Hence, the beam in Fig. 2(a) can be modeled as that in Fig. 2(b) using two beam elements and two springs
to account for the slot with

. —CELW"(a") —cELB*'W(a")

EIl W”(CfL) E]l
T = = = —
W(a*) W(a*)

Wia+ct)—Wia) ¢

= 76‘7’)1192, Ty =

(29)
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Fig. 11. Central and boundary solutions and damage detecticln curves of the eighth mode shape with a symmetric center crack and
0.05% random noise added: (a) C, and Cy, (b) C, and Cj, (¢) Cs, (d) Cs, (e) W (dots), W'/ (= Cs + Cy, thin line), W”/ﬁ2 (=C—Cy,
broken line), and W"/* (= C4 — C,, thick line), (f) SSD, (g) Cy, and (h) C;Cs.

Here 7, is the equivalent linear spring constant accounting for the inertia force of the slotted segment,
m; = m(h — 2e)/h is the mass per unit length of the slotted segment, and 7, is the equivalent torsional spring
constant accounting for the bending stiffness of the slotted segment. Using this two-element model we
obtain the first ten natural frequencies to be 16.905, 105.18, 296.27, 577.25, 962.98, 1425.6, 2009.1, 2651.1,
3435.8, 4253.8 Hz. Apparently, the model shown in Fig. 2(b) represents the damaged beam well because the
w;, i =2,4,6,8,10 are exact, and the errors of w;, i = 1,3,5,7,9 are less than 0.4%, which is because the
two concentrated forces at x = a and x = a + ¢ (see Eq. (4)) are not accounted for in the model shown in
Fig. 2(b) but they are non-zero for odd modes around x = L/2.

Although the stress concentration around a sudden change of cross section increases the bending cur-
vature and makes damage effects more significant, it is difficult to estimate the stress concentration because
it is a complex function of size, geometry, and other factors. Hence, the stress concentration effect is
neglected in the numerical simulations.

Fig. 4 compares the seventh and eighth mode shapes, ¢, and ¢4, with the 2100 Hz ODS with an exci-
tation force applied at x = a(= (L — ¢)/2). Although w; = 2002.1 Hz and wg = 2651.1 Hz, the 2100 Hz
ODS is closer to ¢4 because the excitation is very close to the node of ¢, at x = L/2. However, the two
peaks of the ODS around x = L/2 with different magnitudes indicate that ¢, has non-trivial contribution
because Q is close to w;. Moreover, if the excitation is a 2100 Hz moment at x = a, the ODS will be
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dominated by ¢, because ¢;(a) # 0 and Q is close to w;. In other words, the shape of an ODS depends on
the frequency, location, and type of excitation.

If there is no damage (i.e., e = 0) and the beam is uniform, Fig. 5(a) shows the W, W', W” and W" with a
2100 Hz excitation force at x = a, and Fig. 5(b) shows the ODS with a 2100 Hz excitation moment at x = a.
The concentrated external force causes the cusp of W” and the discontinuity of #”, and the concentrated
external moment causes the cusp of W’ and the discontinuity of W”. The big discontinuity of W is due to the
large transverse force required to excite the ODS that is similar to ¢¢ but the excitation frequency Q is away
from wg. The small discontinuity of #” is due to the small moment required to excite the ODS that is similar
to ¢; and the excitation frequency Q is close to w;. If W is obtained using Eq. (9) with 100 mode shapes, the
cusp on W and the discontinuity on #" in Fig. 5(a) disappear because ¢,, ¢}, ¢;, and ¢ are continuous
functions. Hence, Egs. (7) and (9) are not really exact. Fig. 3 shows that a crack causes the discontinuity on
¢' (or W') and ¢" (or W"). Because the influences of different external loads and damage on ODSs have
different characters, it should be possible to identify them separately using ODSs and their derivatives.

5.2. Damage detection

Fig. 6 shows the results obtained using the BED method shown in Section 4 to process the eighth mode
shape with a+¢/2=1L/2, ¢ =0.039", and 2¢/h = 0.4. Two curve-fitting processes are performed for
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Fig. 12. Damage detection curves of the eighth mode shape with two cracks having ¢ = 0.039” and 2e = 0.4k at x = 0.1L and x=0.5L
and 0.05% random noise added: (a) W (dots), W’/ (thin line), W"/ B* (broken line), and W” / B (thick line), (b) SSD, (c) Cy4, and

(d) C.
Table 1
Different boundary conditions of high-frequency ODSs around x = 0
General Clamped Hinged (0, = 90°, Sliding (0, = 0°, Free
(01 + 0, =90°) (01 = 0, = 45°) b, = 0°) 0, =90°) (0 = 0, =45
G —Acos(fx+60;) —Acos(fx +45°)  Asin(px) —A cos(fx) —A cos(fx + 45°)
G Acos(fx — 0,) Acos(fx —45°) A cos(px) Asin(fix) A cos(fx — 45°)
C; AeH A b 0 0 —4e
Cy —Ae P - %e”“ 0 0 %e”‘x
Cy(=5te 0 0 0 0 0
6'4(: “—;Q) Ae P %e’ﬁ" 0 0 —%e’ﬁx
W(=C + G, A — Acos 0, 0 0 —4 —/24
W' /B(= Cy + Ca)._y AcosO, — 4 0 4 0 V24
W' IBH(=Cs — C1) A+ Acos 6, V24 0 A 0
W B (= Cy — Ca),_y —Acost, — A4 —\/24 —A 0 0

0<x<a and a + c <x <L, respectively. The maximum SSD is less than 103, The results show that the
central solutions C; and C, are smooth harmonic functions, the boundary solution Cs is continuous but has
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Fig. 13. Boundary condition detection curves of the eighth mode shape with one crack having ¢ = 0.01” and 2e = 0.44 at x = 0 and one
crack having ¢ = 0.039” and 2e = 0.4h at x = 0.5L and 0.05% random noise added: (a) C; and Cy, (b) C; and Cs, (¢) W (dots), W'/
(thin line), W/ B (broken line), and W /f* (thick line), and (d) 6, and 6,.

a cusp at the location of damage, the boundary solutions Cy, 6'3 and 6’4 are discontinuous at the damage
location. Because Cy is discontinuous, it follows from Eq. (21) that #’ and W" are discontinuous. We note
that the right-end boundary solution C5 and the left-end boundary solution Cy4 are well separated. Because
e = 0.2h, the damage is considered to be big, but the damage indicators shown in Fig. 6 are not very
significant, especially if noise exists. If only one curve-fitting process is performed for the whole beam
0<x <L, Fig. 7 shows the results. We note that all C; and C; are continuous because the four continuous
functions shown in Eq. (16) are used in the curve-fitting. However, because W’ and W are discontinuous,
the use of continuous functions to fit such a discontinuous function results in Gibbs’ phenomenon. We note
that the significant sign changes of C,;, C; and C4 and the peak of C; at the damage location in Fig. 7 are
caused by Gibbs’ phenomenon. Gibbs’ phenomenon also makes C; and C, non-smooth. Hence, Gibbs’
phenomenon actually makes the identification of damage easier.

Fig. 8 shows the results obtained by processing the 2100 Hz ODS shown in Fig. 5(a). We note that the
styles of boundary and central solutions are very different from those in Fig. 7 because the discontinuity is
due to a shear force. Fig. 9 shows the results obtained by processing the 2100 Hz ODS shown in Fig. 5(b).
We note that the styles of boundary and central solutions are very different from those in Figs. 7 and 8
because the discontinuity is due to a bending moment. Fig. 10 shows the results obtained by processing the
2100 Hz ODS under a moment —M at x = 10” and a moment M at x = 12”. The loading condition is similar
to that caused by a 2" long PZT patch. We note that the styles of boundary and central solutions are more
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complex than those in Figs. 7-9 because the discontinuities are due to two bending moments. Hence, it is
possible to distinguish boundary solutions due to damage, actual boundaries, external forces, and external
bending moments from each other.

Because ODSs obtained using a scanning laser vibrometer always contain noise due to spectral noise and
other factors, we also consider ODSs with noise. Fig. 11 shows the curve-fitted results obtained by pro-
cessing the eighth mode shape with a + ¢/2 = L/2, ¢ = 0.039”, 2¢/h = 0.4 and 0.05% uniformly distributed
random noise added. N =5 (see Eq. (18)) and Ax = L/200 (i.e., the space between two adjacent sample

o5 ) ﬁ.
y 5 e=.0375 o °
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Fig. 14. A free-clamped beam with an asymmetric center crack.
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Fig. 15. Damage detection curves of the 1295 Hz ODS of the free-clamped 22" x 1" x0.25" aluminum beam having a crack with

¢=0.039" and e = 0.15h at x = 11”: (a) W (dots), W'/ (thin line), W" /p* (broken line), and W /* (thick line), (b) SSD, (c) C4, and
(d) G\ Cs.
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Fig. 16. Damage detection curves of the 2612.5 Hz ODS of the clamped (without tape)-clamped 21.1" x 1" x0.25" aluminum beam
having a crack with ¢ = 0.039” and e = 0.15/ at x = 10.1”: (a) W (dots), W’/ (thin line), W” /* (broken line), and W" /f* (thick line),
(b) SSD, (c) C4, and (d) C;Cs.

points) are used. The C;, Cy, 6‘; and 6'4 still clearly indicate the damage location, but Cj, 6'; and 6'4 are
rough. The SSD and C,C; also clearly indicate the damage location. The thin lines in Fig. 11(f)-(h) are
obtained using N = 5 and Ax = 2L/200, i.e., doubled the sliding-window length 2N Ax.

Fig. 12 shows the curve-fitted results obtained by processing the eighth mode shape with two cracks
having ¢ = 0.039” and 2e = 0.4h at x = 0.1L and x = 0.5L. Although the left crack is within the boundary
zone, the sign change of the right-end boundary solution C; clearly indicate the crack location.

We note that, if Eq. (16) is used to fit the whole ODS (or a selected section) without using a sliding
window, one can only obtain one value for each of the four coefficients ¢;. Then, the fitted ODS is an
average representation of the actual ODS, and no local variation can be revealed. If a cubic polynomial is
used in the curve-fitting with the use of a sliding window, one can show that

W(X) = D) + DyX + D3xX* + DyX°

wO)=D,, W(0)=D,  W'0)=2D;,  W"(0)=6D, (30)

We note that boundary solutions cannot be separated from the central solutions. Moreover, the D; have
values of different orders and are difficult to be compared in one figure.
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Fig. 17. Damage detection curves of the 2612.5 Hz ODS of the clamped (with tape)-clamped 21.1" x 1" x0.25” aluminum beam having a
crack with ¢ = 0.039” and e = 0.15h at x = 10.1”: (a) W (dots), W’/ (thin line), W”/ﬁ2 (broken line), and W’”/ﬁ3 (thick line), (b) SSD,

(C) Cy, and (d) CiCs.
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Fig. 18. A free-clamped aluminum beam with three cracks.

5.3. Identification of boundary conditions

For one general and four perfect boundary conditions, Table 1 shows boundary and central solutions of
high-frequency ODSs around the boundary at x = 0. We note that, for any boundary condition around
x=0,C; =—A4cos(fx+6,), C; =Acos(fx — 6,), and 0, + 6, = 90°. For the four perfect boundary con-
ditions, 0; and 6, are equal to 0°, 45° or 90°, as shown in Table 1. Because a general boundary point can be
connected to a linear spring, a torsional spring, a translational mass, a rotational mass, a linear damper, a
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Fig. 19. Damage detection curves of the 1556.25 Hz ODS of the free-clamped 23.94" x0.743" x0.188" beam with three cracks using
N =5 and Ax =2L/501: (a) W (dots), W'/f (thin line), W" | B* (broken line), and W" /B (thick line), (b) SSD, (c) Cs, and (d) C,C;.

torsional damper, an external force, and/or an external moment, the amplitude of boundary solutions, A,
may not be equal to A/\/i and 6; and 0, may not be equal to 0°, 45° or 90° although 6, + 6, = 90°.

Fig. 13 shows the curve-fitted results obtained by processing the eighth mode shape with a crack within
0<x<0.01”" and 2¢/h = 0.4 and another crack having ¢ = 0.039", 2¢/h = 0.4, a +¢/2 =L/2 and 0.05%
noise added. We note that, although the crack depth 2e is 40% of the thickness, the boundary and central
solutions do not deviate much from those of a perfectly clamped condition shown in Table 1, except that
W' has a small value at x = 0. Hence, it is difficult to identify actual boundary conditions using boundary
or central solutions. However, 0; = 47.08° > 45° and 60, = 42.84° < 45° clearly indicate that the boundary
is not perfectly clamped, which is due to the crack at x = 0. Moreover, the sudden change of 0; and 0,
around x = L/2 also indicate the second crack. Because C, and C, are smoother than C;, Cy, C3, and C4
(see Fig. 11), the extraction of 0, and 6, from C; and C, are not sensitive to the presence of noise. For
example, when 0.5% random noise is added to the mode shape, the distributions of 8, and 6, are still able
to reveal the non-perfect boundary at x = 0 and the crack at x = L/2 but all other boundary and central
solutions are too shaky to reveal the damage. If the boundary point at x = 0 is known and can be reached
for measurement, one can use 0; to check whether there is any damage. If the boundary point at x = 0 is
unknown and/or cannot be reached for measurement, one can also use 0; to estimate the location of the left
end.
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Fig. 20. Damage detection curves of the 1556.25 Hz ODS of the free-clamped 23.94" x0.743" x0.188" beam with three cracks using
N =5 and 4x = 3L/501: (a) W (dots), W’/ (thin line), w"/B* (broken line), and W /f* (thick line), (b) SSD, (c) Cy, (d) C,Cs, () C,
and Cy, (f) C; and G;, (g) Cy4, and (h) C;.

6. Experimental results

Fig. 14 shows a free-clamped 22" x 1" x0.25" aluminum beam with a center crack having a crack width
¢ =10.039" and a crack depth e = 0.0375"(= 0.15k). Fig. 15 shows the results obtained using the BED
method with N = 5 (see Eq. (18)) and Ax = 2L/250 (i.e., the space between two adjacent sample points) to
process the 1295 Hz ODS, which was excited by the PZT patch shown in Fig. 14 and was measured at 250
(= M, see Eq. (27)) points using the scanning laser vibrometer from the backside of the beam. The thin lines
in Fig. 15(b)—(d) are obtained using N = 5 and Ax = 5L/250. Fig. 15(a) shows that it is difficult to find the
crack by examining the ODS W (= C| + Cs, dots), W'/ (= C, + Cy, thin line), W/ B* (= C; — Cy, broken
line), or W/ ﬁ3 (= C4 — (s, thick line). On the other hand, the peak of SSD, the dimple of C,C;, and the
sign change of C4 at x = 0.5L clearly indicate the crack location. The peak of SSD around x = L is due to
the bending moment from the PZT patch. The peak of SSD around x = 0.45L when Ax = 5L/250 is caused
by coupling with the peak at x = 0.5L (see the side-lobes in Fig. 11(f)) and there is no damage at x = 0.45L
because it becomes relatively small when Ax is reduced to 2L/250. Because the first measurement point is
actually about 0.1" to the right of the free end, requiring 0, = 45° and matching the theoretical C, function
of a free end shown in Table 1 with the curve-fitted C; curve indicates that the free end is at x = —0.1”, as it
should be.
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Fig. 20 (continued)

Then a 0.9" section of the left end was clamped using two steel plates in a way similar to the right
clamped end. Fig. 16 shows the curve-fitted results obtained by processing the 2612.5 Hz ODS using N = 5
and Ax = 3L/615. The thin lines in Fig. 16(b)—(d) are obtained using N =5 and 4x = 6L/615. The fre-
quency was picked up from the seventh peak on the averaged FRF obtained using a 0-20 kHz periodic
chirp excitation. Again the peak of SSD, the dimple of C;Cj;, and the sign change of C; at x = 0.474L clearly
indicate the crack location. Because the first measurement point is actually about 0.1 to the right of the left
clamped end, requiring 0, = 45° and matching the theoretical C; function of a clamped end shown in Table
1 with the curve-fitted C; curve indicates that the free end is at x = —0.6”, instead of x = —0.1”. In other
words, the left end is not perfectly clamped, which was believed to be due to non-perfect contact between
the two steel plates and the beam. The peak of SSD, the roughness of C,C;, and the sign change of C,
around x = 0 also indicate a non-perfect boundary point. To improve the contact two pieces of duck tape
were put between the two steel plates and the beam and a larger clamping force was applied, which resulted
in the increase of the seventh peak on the average FRF to 2687.5 Hz. Fig. 17 shows the curve-fitted results
obtained by processing the 2687.5 Hz ODS using N = 5 and 4x = 3L/613. The thin lines in Fig. 17(b)—(d)
are obtained using N =5 and 4x = 6L/613. Again the peak of SSD, the dimple of C;C;, and the sign
change of C, at x = 0.474L clearly indicate the crack location. Requiring 0; = 45° and matching the the-
oretical C; function of a clamped end with the curve-fitted C; curve indicates that the free end is at
x = —0.3", instead of x = —0.1”. In other words, the left end was still not perfectly clamped, which was
believed to be due to the flexibility of the duck tape. If there is a crack at x = 0, the predicted left end will be
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at x < —0.3". However, the peak of SSD around x = 0 in Fig. 16(b) is eliminated in Fig. 17(b) because of a
better contact. These tests show that even a perfectly clamped boundary condition is difficult to be realized
in experiment.

Fig. 18 shows a free-clamped 23.94" x0.743" x0.188" aluminum beam with three cracks having a crack
width ¢ =0.039” and crack depths e =0.031"(= 0.16%), e = 0.053"(= 0.284), and e = 0.025"(= 0.13h),
respectively. Fig. 19 shows the results obtained using the BED method with N =5 and 4x = 2L/501 to
process the 1556.25 Hz ODS, and Fig. 20 is obtained using N = 5 and Ax = 3L/501. The thin lines in Figs.
19(b)—(d) and 20(b)—(d) are obtained using N = 5 and Ax = 6L/501. Figs. 19(a) and 20(a) show that it is
difficult to locate the cracks, especially when the sliding-window length 2N 4x is large. On the other hand,
the peaks of SSD and Cj, the dimples of C,C;, the sign changes of Cy4, C;, C4 clearly indicate the three crack
locations. Figs. 19(b)—(d) and 20(b)—(d) show that comparing damage location curves obtained using two
different sliding-window lengths makes it easy to find damage locations. Although increase of the sliding-
window length makes the peaks of SSD and the sign changes of Cy clear, it reduces the dimples of C;C;.
Hence, there should be an optimum sliding-window length for revealing damages. Experimental and
numerical results showed that, if noise is small, a sliding-window length (2NAx) of A/4 works best for
locating and estimating cracks (Pai et al., 2003). However, because actual noise is usually unknown, it is
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Fig. 21. The 3525.78 Hz traveling ODS.
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Fig. 22. A free-clamped aluminum beam with four cracks.
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Fig. 23. Damage detection curves of the 1675 Hz ODS of the free-clamped 28.8" x0.743" x0.188" beam with four cracks using N = 5
and Ax = 2L/601: (a) W (dots), W'/f (thin line), W”//i’2 (broken line), and W /f* (thick line), (b) SSD, (c) C4, and (d) C,Cs.

better to process experimental data using at least two different sliding-window lengths. The peak of SSD
around x = 0 is due to the first 6.06" beam segment was gradually distorted by twisting from x = 6.06” to
x = 0 by about 5°. The actual left end is at x = —0.15”, but requiring 6; = 45° and matching the theoretical
C, function of a free end with the curve-fitted C; curve indicates that the free end is at x = —0.09”. This
inaccuracy is due to the beam distortion. All the three cracks can be detected by the damage detection
curves of this 1556.25 Hz ODS because each crack is close to a peak of the ODS. If there are cracks around
the nodes of this ODS, they will be not revealed by the damage detection curves. Hence, at least two ODSs
with peaks covering the whole beam need to be processed in order to reveal all possible defects.

An alternative approach is to examine just one traveling ODS because the peaks (and nodes) of a
traveling ODS move. Egs. (7) and (9) indicate that an easy way to have traveling ODSs is to create non-
uniform distribution of damping properties. Two pieces of 6 x0.743" 3M-DF-2552 damping foil were put
between cracks #1 and #2 and cracks #2 and #3 shown in Fig. 18. The 3M-DF-2552 consists of a room
temperature pressure sensitive viscoelastic polymer (0.005" thick) on a dead soft aluminum foil (0.01"
thick), and the mass density is 0.17 Ib/ft>. Fig. 21 shows the 3525.78 Hz ODS at different time instants; it is
apparently a traveling wave. Experimental results show that it is easier to obtain high-frequency traveling
ODSs than low-frequency ones, and ODSs over the left beam segment without damping foil only show
standing waves. We note that, although one can process a profile of a traveling ODS when its peaks move
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close to the global nodes to detect damage around the global nodes, the damage detection curves are not
clear because such a profile usually has a small amplitude with significant noise, as shown in Fig. 21.

Fig. 22 shows a free-clamped 28.8" x0.743" x0.188" aluminum beam with four cracks having a crack
width ¢ =0.039” and crack depths e = 0.053"(= 0.284), e = 0.046" (= 0.24h), e = 0.046"(= 0.24%), and
e = 0.0375"(= 0.204), respectively. Fig. 23 shows the results obtained using the BED method with N =5
and Ax = 2L/601 to process the 1675 Hz ODS. The thin lines in Figs. 23(b)—(d) are obtained using N = 5
and Ax = 5L/601. Again, the peaks of SSD, the dimples of C,C;, the sign changes of Cy clearly indicate the
four crack locations. The actual left end is at x = —0.11”, and requiring 6; = 45° and matching the theo-
retical C; function of a free end with the curve-fitted C; curve indicates that the free end is at x = —0.13".
This inaccuracy is due to crack #1 being close to x = 0. We note that, although cracks #1 and #2 are close
to the left boundary point, the damage location curves SSD and C,Cj still show the damage locations
clearly, and they are very similar to the numerical simulation results shown in Fig. 12.

The cracks that the BED method can locate and estimate has been experimentally shown to be cracks
with a crack depth e > 0.054 (Pai et al., 2003). However, we point out here that, if a crack is irregular or not
perpendicular to the x-axis, the BED still works but the corresponding torsional deformation will affect the
accuracy. Moreover, if the beam width is large, it is better to treat the structure as a two-dimensional (2D)
structure. For 2D structures, a similar method can be derived for damage detection and boundary iden-
tification, which will be reported later.

7. Concluding remarks

A signal decomposition method for extracting boundary effects from an ODS is presented. The method
processes an experimental ODS using a sliding-window least-squares curve-fitting technique to separate
boundary and central solutions. The extracted boundary solutions can be used for finding damage loca-
tions, and the central solutions can be used for identifying actual boundary conditions. Numerical simu-
lations and experimental results validate the proposed method for 1D structures.
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