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Abstract

Presented here is a signal decomposition method for extracting boundary effects from an operational deflection shape

(ODS) of a structure under harmonic excitation. It decomposes an ODS into central and boundary solutions using a

sliding-window least-squares curve-fitting technique, and the boundary solutions can be used to reveal damage loca-

tions, and the central solutions can be used to identify boundary conditions. Except an experimental ODS the method

requires no model or historical data for comparison. Exact mode shapes and ODSs of beams with damage are obtained

by spectral element analysis. Boundary and central solutions caused by different boundary conditions, different loading

conditions, and different damage with or without noise are simulated and characterized. Numerical results show that

Gibbs� phenomenon caused by the use of continuously differential functions to fit ODSs with discontinuous first-,

second-, and/or third-order derivatives actually makes boundary solutions excellent damage indicators. Several

experiments are performed using a scanning laser vibrometer for sensing and a lead zirconate titanate (PZT) patch for

actuation. The experimental results confirm the feasibility and accuracy of this boundary effect detection method in

detecting multiple defects and identifying boundary conditions of beams.
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1. Introduction

Several dynamics-based structural health monitoring methods have shown the capability of detecting the

existence of defects in structures (Doebling et al., 1996). However, locating and estimating defects in

structures remains a challenging issue, especially locating small defects without historical data or an
accurate structural model with known boundary conditions.

It is well known in the literature that using structural dynamic responses to locate small defects requires

the use of high-frequency deflection shapes, i.e., deflection shapes with high local curvatures. Unfortunately,
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to obtain high-frequency deflection shapes requires spatially dense and accurate measurements in order to

reduce spatial aliasing in signal processing. A scanning laser vibrometer provides a unique solution to the

spatial aliasing problem because of its non-contact, remote, large-area scanning, dense, high-frequency

bandwidth, and accurate measurement capabilities. However, even if a scanning laser vibrometer is avail-
able, how to extract clear damage signals from the large amount of dynamic response data obtained from a

scanning laser vibrometer is another challenging issue.

Actual boundary conditions of a built-up structure are usually difficult to determine (Wang and Chen,

1996; Lee and Jeon, 1999). Even for some simple structures it is difficult to determine appropriate boundary

conditions. For example, a simply supported boundary of a beam is difficult to be realized in experiment.

The simply supported boundary becomes similar to a clamped end if the supporting force is too large, and

sliding and jumping with friction becomes a difficult non-linear problem if the supporting force is too small.

A clamped end is usually considered to be easy to setup in experiment. But, if the clamping force is too
large, the boundary effects deviate significantly from the ideal ones because of cross section warpings.

Moreover, sometimes boundary points of a structure are not accessible or only a few points close to a

boundary can be measured. Hence, identification of actual boundaries of an existing structure is important

and challenging. However, very few studies have been performed on the identification of actual boundary

conditions although it is important in the assessment of aging structures or structures after natural disasters

(e.g., earthquakes and tornados).

Pai and Jin (2000) derived a boundary effect detection (BED) method that can locate small structural

defects by using operational deflection shapes (ODSs) measured by a scanning laser vibrometer. The BED
method works without using historical data; it uses a sliding-window least-squares curve-fitting technique

to extract boundary solutions from an ODS to reveal defect locations. Experiments have been performed to

verify the capability of the BED method in locating surface slots, edge slots, surface holes, internal holes,

fatigue cracks, and stiffened sections (Pai and Jin, 2000; Pai and Young, 2001; Jin and Pai, 2000). Numerical

and experimental results show that the BED method seems more sensitive and reliable than other

dynamics- or deformation-based methods. However, some questions about the BED method remain to be

answered and some limitations need to be eliminated.

This work is (1) to explain why the damage detection curves obtained from the BED method show
certain strong characters that can be used to reveal multiple damage locations, (2) to extend the BED

method for detecting defects around boundaries and for identifying structural boundary conditions, and (3)

to experimentally verify this improved BED method.
2. Measurement of operational deflection shapes

Fig. 1 shows the experimental setup used in measuring ODSs of a structure. An ODS is defined in this

work as the deflection shape of a structure when it is subjected to a single-point or multiple-point or

distributed harmonic excitation at one frequency. A Polytec PSV-200 scanning laser vibrometer is used to

measure the velocities of equally spaced points over the structure when the structure is subjected to a
harmonic excitation from an actuator, such as a lead zirconate titanate (PZT) patch integrated with the

structure (as shown in Fig. 1) or an external electromechanical shaker. The PZT patch used here is a

QuickPack QP10N actuator purchased from ACX, Inc. The QuickPack actuator packages piezoceramics in

a protective polyimide coating with pre-attached electrical leads. It is a 2
00 · 100 · 0.01500

patch with a

1.81
00 · 0.8100 · 0.01000

piezo wafer, and the maximum allowable operating voltage is 200 V.

The PCB-790 power amplifier magnifies, by 20 times, the sinusoidal voltage from the HP-33120A 15

MHz function generator and sends it to the PZT patch. The OFV-3001-S vibrometer controller controls the

rotation of the two mirrors in the OFV-055 scan head and the scanning of the laser beam, and it receives the
interferometry created by the backscattered laser beam and the reference laser beam in the OFV-303 sensor



Fig. 1. The experimental setup for measuring ODSs of a structure using a PSV-200 scanning laser vibrometer for sensing and a PZT

patch for actuation.
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head. The output voltage from the HP-33120A function generator is also used as the input signal to

Channel A of the OFV-3001-S vibrometer controller. The OFV-3001-S controller includes two indepen-

dently programmable low-pass filters for filtering the signal from the HP-33120A function generator and

the signal from the OFV-303 sensor head, respectively. After filtering, these two signals are sent from

Channels A and B of the controller to the 400 MHz computer system, which is operated by the Windows

NT and processes the measured data. The video control box controls the swiveling and tilting of the OFV-

055 scan head and the focusing of the video camera in the OFV-055 scan head. A standardized composite
video signal from the camera is passed via a BNC connection on the video control box to the video input

of the computer system.

To obtain experimental ODSs we first perform an ‘‘FFT’’ acquisition to obtain frequency response

functions (FRFs) of all measurement points using a periodic chirp excitation, and then we choose an

isolated natural frequency or any other frequency from the averaged FRF. After that we perform a ‘‘FAST

SCAN’’ acquisition using a single-frequency excitation at the chosen frequency to obtain the corresponding

ODS.

The noise level of the measured ODSs is primary determined by the frequency bandwidth Bw used in the
‘‘FAST SCAN’’ acquisition. The noise level is proportional to

ffiffiffiffiffiffi
Bw

p
. However, the minimum bandwidth is

limited to 0.02% of the excitation frequency, and the data acquisition time increases when Bw decreases.

Hence the noise level of high-frequency ODSs obtained using the ‘‘FAST SCAN’’ acquisition can be high.

However, the noise level of all ODSs obtained in this study is estimated to have a standard deviation below

0.1% of the maximum value of the corresponding ODS.

The velocity profile obtained from a scanning laser vibrometer is based on the assumption that the

vibration period of each measurement point is the same. If the vibration is periodic with a known period T
and the recording at each location is triggered to start at nT (n is an integer) after the beginning recording
time of the previous measurement point, the velocity profile at t ¼ tk can be obtained by connecting the

measured velocities of all measurement points at tk. If the vibration consists of harmonics that are not



3056 P.F. Pai et al. / International Journal of Solids and Structures 41 (2004) 3053–3080
commensurable or unknown non-linear coupling exists, the ODS cannot be measured using a scanning

laser vibrometer because the period T is unknown. For such cases, one need to use a 3D motion analysis

system, which measure the instant locations of all measurement points simultaneously and hence the ob-

tained ODSs are the true ODSs. However, the maximum number of measurement points of such systems is
limited and the maximum sampling frequency is 2000 Hz or less. Hence, high-order ODSs cannot be

measured using such systems.
3. Analysis of imperfect beams

Here we show how to obtain numerical dynamic characteristics of a beam with damage and/or imperfect

boundary conditions. Fig. 2(a) shows a beam having a rectangular cross section, a symmetric open crack at

x ¼ a, and clamped-supported boundary conditions. If the beam is modeled as three beam segments, the
corresponding equation of motion can be derived to be
½E~Iw00�00 þ ~c _wþ em€w ¼ f ðx; tÞ ð1Þ
where
~I � I � Î ½uðx� aÞ � uðx� a� cÞ�; Î � 2

Z h=2

h=2�e
z2 dA

em � m� bm½uðx� aÞ � uðx� a� cÞ�; bm � 2em=h

ð2Þ
And, boundary conditions are given by
wð0; tÞ ¼ w0ð0; tÞ ¼ 0; s1wðL; tÞ � EIw000ðL; tÞ ¼ 0; s2w0ðL; tÞ þ EIw00ðL; tÞ ¼ 0 ð3Þ
Here w is the transverse displacement, E Young�s modulus, I the area moment of inertia of the intact beam,
I � Îð� I1Þ the area moment of inertia of the slotted segment, em the mass per unit length, ~c the damping

coefficient, w0 � ow=ox, _w � ow=ot, t the time, A the cross sectional area, uðx� aÞ a unit step function, h the

beam thickness, b the beam width, e the crack depth, c the crack width, and f ðx; tÞ is the distributed external
Fig. 2. A clamped-supported beam with a symmetric open crack: (a) the system and (b) a simplified model.
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load. Moreover, L is the beam length, s1 is the linear spring constant, and s2 is the torsional spring constant

of the springs at x ¼ L. Eq. (1) can be rewritten as
EIwiv þ ~c _wþ em€w ¼ EÎw00½u00ðx� aÞ � u00ðx� a� cÞ� þ 2EÎw000½u0ðx� aÞ � u0ðx� a� cÞ�
þ EÎwiv½uðx� aÞ � uðx� a� cÞ� þ f ðx; tÞ ð4Þ
Because u0ðx� aÞ ¼ dðx� aÞ (the Kronecker delta function) and u00ðx� aÞ ¼ d0ðx� aÞ, Eq. (4) shows that
the forced damped vibration of a beam with a slot is equivalent to an intact beam subjected to two con-

centrated bending moments EÎw00ðaþÞ and �EÎw00ðaþ c�Þ, two concentrated shear forces 2EÎw000ðaþÞ and
�2EÎw000ðaþ c�Þ, one distributed force EÎwiv between x ¼ a and x ¼ aþ c, and the externally applied

distributed load f ðx; tÞ (Thomson, 1949; Man et al., 1994).
3.1. Dynamic characteristics

The ith mode shape /i is the free undamped deflection shape harmonically vibrating at the ith natural

frequency xi and is given by
/iðxÞ ¼ �c1 cos bixþ �c2 sin bixþ �c3 cosh bixþ �c4 sinh bix; bi �
mx2

i

EI

� �1=4

ð5Þ
where the coefficients �ci are determined by boundary conditions and bi is determined by the corresponding

frequency equation. To obtain /i and xi one can model the damaged beam shown in Fig. 2(a) as three

beam segments and use boundary conditions and the continuity of displacements, slopes, bending mo-

ments, and shear forces at the two joints. If the /iðxÞ is normalized with respect to em to be
Z L

0

em/2
i ðxÞdx ¼ 1; ð6Þ
the FRF Hmn for the response wðxm; tÞð¼ W ðxmÞejXtÞ due to a harmonic excitation f ðx; tÞ ¼ F0dðx� xnÞejXt
can be derived to be (Inman, 2001)
HmnðXÞ ¼
W ðxmÞ
F0

¼
X1
i¼1

/iðxmÞ/iðxnÞ
x2

i � X2 þ 2fixiXj
ð7Þ
where X is the excitation frequency, j �
ffiffiffiffiffiffiffi
�1

p
, and fi is the modal damping ratio for the ith mode. However,

this is an indirect approach because all mode shapes and natural frequencies need to be obtained first and a

summation of infinite terms is needed. Another way to obtain FRFs is to derive a finite element model first

and then use the obtained mass (½M �), damping (½C�), and stiffness (½K�) matrices to compute the FRF
matrix ½H � as ½H � ¼ ½�X2½M � þ jX½C� þ ½K���1

. However, this approach is also indirect and it is not accurate

in predicting high-frequency FRFs, bending moments, and shear forces because of the approximate,

polynomial shape functions used in finite element modeling. Hence we are going to use the spectral element

method (Doyle, 1989; Lee and Lee, 1997, 1999) to obtain natural frequencies and mode shapes and directly

compute FRFs and ODSs of beams with damage and/or non-ideal boundary conditions.

An ODS is different from a mode shape. However, if ~c is constant and f ðx; tÞ ¼ F ðxÞ sinðxitÞ with

F ðxÞ ¼ /iðxÞ, the distributed excitation force is exactly balanced out by the distributed damping force and

the ODS is the same as the free vibration mode shape /i. If the beam is subjected to a periodic excitation
f ðx; tÞ ¼ F0dðx� xnÞejXt, wðx; tÞ ¼ W ðxÞejXt. And, for a uniform section of the beam that is free of loads,

damage and damping, the ODS W ðxÞ is given by
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W ðxÞ ¼ c1 cos bxþ c2 sin bxþ c3 cosh bxþ c4 sinh bx;b ¼ mX2

EI

� �1=4

ð8Þ
Of course W ðxÞ is a function of X also; however, we use W ðxÞ instead of W ðx;XÞ to simplify the expressions.

Eqs. (7) and (8) show that
W ðxÞ ¼
X1
i¼1

F0/iðxÞ/iðxnÞ
x2

i � X2
ð9Þ
Eqs. (8) and (9) indicate that, when X is not close to an isolated natural frequency, the ODS may consist of

multiple mode shapes but the ODS is still a normal mode. Experimental results show that, even when F ðxÞ
is different from a mode shape but the excitation frequency is close to the ith natural frequency, the ODS is

still dominated by the ith mode shape. However, Eqs. (7) and (9) show that, when damping is significant,

the ODS is very possible a complex mode if X is not close to an isolated natural frequency. In such cases,

the ODS actually consists of several mode shapes and the nodes are traveling (Nayfeh and Mook, 1979; Pai

and Lee, 2003). If there is no non-linear effects (e.g., non-linear modal coupling and energy transferring to

low-frequency modes), the complex mode still vibrates at the excitation frequency X but the deflection

shape periodically change with time.

3.2. Spectral element analysis

If three two-node beam elements are used to model the beam shown in Fig. 2(a), because w1 ¼ wð�l; tÞ,
h1 ¼ w0ð�l; tÞ, w2 ¼ wðl; tÞ and h2 ¼ w0ðl; tÞ for the first element, one can use Eq. (8) to derive that,
wðx; tÞ ¼ N1ðxÞw1 þ N2ðxÞh1 þ N3ðxÞw2 þ N4ðxÞh2 ð10aÞ

where �l6 x6 l, the elemental beam length is 2l, and
N1ðxÞ ¼
sinh bl cos bxþ sin bl cosh bx

d1
þ� cosh bl sin bxþ cos bl sinh bx

d2

N2ðxÞ ¼
cosh bl cos bx� cos bl cosh bx

bd1
þ� sinh bl sin bxþ sin bl sinh bx

bd2

N3ðxÞ ¼
sinh bl cos bxþ sin bl cosh bx

d1
þ cosh bl sin bx� cos bl sinh bx

d2

N4ðxÞ ¼
� cosh bl cos bxþ cos bl cosh bx

bd1
þ� sinh bl sin bxþ sin bl sinh bx

bd2

d1 � 2ðsin bl cosh blþ cos bl sinh blÞ; d2 � 2ðsin bl cosh bl� cos bl sinh blÞ

ð10bÞ
Because the bending moments Mi and shear forces Vi at the left (i ¼ 1) and right (i ¼ 2) nodes of the first

beam element are related to w as
V1 ¼ EIw000ð�l; tÞ; M1 ¼ �EIw00ð�l; tÞ; V2 ¼ �EIw000ðl; tÞ; M2 ¼ EIw00ðl; tÞ ð11Þ
we obtain from Eqs. (10) and (11) that
V1
M1

V2
M2

8>><
>>:

9>>=
>>; ¼ ½k�

w1

h1
w2

h2

8>><
>>:

9>>=
>>;; ½k� �

k11 k12 k13 k14
k12 k22 k23 k24
k13 k23 k33 k34
k14 k24 k34 k44

2
664

3
775 ð12aÞ
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where
k11 ¼ k33 � �D0b
2ðcos 2bl sinh 2blþ sin 2bl cosh 2blÞ

k12 ¼ �k34 � �D0b sin 2bl sinh 2bl

k13 � D0b
2ðsin 2blþ sinh 2blÞ

k14 ¼ �k23 � D0bðcos 2bl� cosh 2blÞ

k22 ¼ k44 � D0ðcos 2bl sinh 2bl� sin 2bl cosh 2blÞ

k24 � D0ðsin 2bl� sinh 2blÞ

D0 � EIb=ðcos 2bl cosh 2bl� 1Þ

ð12bÞ
The coordinate transformation for transforming the elemental dynamic stiffness matrix ½k� and the assembly

of global dynamic stiffness matrix ½K� are the same as those used in conventional finite element modeling.

Both ½k� and ½K� are symmetric. We note that the ½k� will be singular when cos 2bl cosh 2bl ¼ 1. In that case,

one can choose a different elemental length. Because the beam in Fig. 2(a) is modeled using three elements,
we have
½K�fqg ¼ fF g
fqg � fw1; h1;w2; h2;w3; h3;w4; h4gT; fF g � fV1;M1; V2;M2; V3;M3; V4;M4gT

ð13Þ
If the right end of the beam shown in Fig. 2(a) is free, the external forces and moments on the nodes are
V2 ¼ M2 ¼ V3 ¼ M3 ¼ V4 ¼ M4 ¼ 0 ð14Þ
and V1 and M1 are unknown. Using the boundary conditions w1 ¼ h1 ¼ 0 to reduce the ½K� into a 6�6

matrix ½K� and then use j ½K� j¼ 0 to determine natural frequencies and mode shapes. The FRF matrix ½H �
can be obtained as ½K��1

.

4. Extraction of boundary effects

To extract boundary effects from an ODS we improve our previous approach (Pai and Jin, 2000) by

separating left and right boundary conditions. For an ODS of the entire beam, we have
W ðxÞ ¼ c1 cos bxþ c2 sin bxþ c3 cosh bxþ c4 sinh bx

¼ c1 cos bxþ c2 sin bxþ ĉ3 ebx þ ĉ4 e�bx; ĉ3 �
c3 þ c4

2
; ĉ4 �

c3 � c4
2

ð15Þ
It is apparent that, when b is large, ĉ3 ebxð¼ ~c3 e�bðL�xÞ;~c3 � ĉ3 ebLÞ decays toward zero at x ¼ 0 and ĉ4 e�bix

decays toward zero at x ¼ L. Hence, these two terms are right and left boundary solutions, and the first two

terms are called central solutions.

For a large structure, measuring an ODS of the entire structure using one measurement setup is difficult,

and it is more practical to measure and process the ODS of a local small area at each time. Hence, we will

use a sliding-window least-squares curve-fitting method and a moving coordinate �x (� x� xm, xm is the

location of the point under observation) for processing a local ODS to extract boundary solutions. Hence
we rewrite Eq. (15) as
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W ð�xÞ ¼ c1 cosðbxm þ b�xÞ þ c2 sinðbxm þ b�xÞ þ c3 coshðbxm þ b�xÞ þ c4 sinhðbxm þ b�xÞ
¼ C1 cosðb�xÞ þ C2 sinðb�xÞ þ C3 coshðb�xÞ þ C4 sinhðb�xÞ

¼ C1 cosðb�xÞ þ C2 sinðb�xÞ þ bC3 e
b�x þ bC4 e

�b�x ð16Þ
where
C1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

q
cosðbxm � /Þ; C2 � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

q
sinðbxm � /Þ; tan/ � c2

c1

C3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 þ c24

q
coshðbxm þ wÞ; C4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 þ c24

q
sinhðbxm þ wÞ; tanhw � c4

c3bC3 �
C3 þ C4

2
; bC4 �

C3 � C4

2
; C3 ¼ bC3 þ bC4; C4 ¼ bC3 � bC4

ð17Þ
To find the coefficients Ciði ¼ 1; 2; 3; 4Þ for the point at �x ¼ 0 (i.e., x ¼ xm) we use the data points around

x ¼ xm to minimize the fitting error. If Wi denotes W ð�xiÞ and Yi denotes the experimental data at �xi, we define
the fitting error Error as
Error �
XN
i¼�N

aiðWi � YiÞ2 ð18Þ
ig. 3. The eighth mode shape of a 22
00 · 100 · 0.2500

cantilever with a crack having aþ c=2 ¼ L=2, c ¼ 0:03900 and 2e ¼ 0:4h.

The 2100 Hz ODS, W2100, and seventh and eighth mode shapes, /7 and /8, of the 22
00 · 100 · 0.2500

cantilever with a symmetric

crack.



Fig. 5. The 2100 Hz ODS, W , and its derivatives of the 22
00 · 100 · 0.2500

cantilever without crack: (a) an external force at x ¼ 10:98100,

(b) an external moment at x ¼ 10:98100, and (c) ODSs obtained using Eq. (9) (dotted lines) and spectral elements (solid lines) with an

external force at x ¼ 10:98100.
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where the total number of points used is 2N þ 1, and ai is a weighting factor. In this work, we choose

to use
ai ¼
1

1þ j99i=N j ð19Þ
The four equations to determine Ci for the point at �x ¼ 0 are given by
oError

oCj
¼

XN
i¼�N

2aiðWi � YiÞ
oWi

oCj
¼ 0; j ¼ 1; 2; 3; 4 ð20Þ



Fig. 6. Central and boundary solutions of the eighth mode shape of the 22
00 · 100 · 0.2500

cantilever with a symmetric center crack

obtained using two separate curve-fitting processes for 06 x6L=2 and L=26 x6L: (a) C2 and C4, (b) C1 and C3, (c) bC4, and (d) bC3.
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After Ci are determined, one can obtain W , W 0, W 00, and W 000 for the point at �x ¼ 0 by using the following
equations:
W ð0Þ ¼ C1 þ C3 ¼ C1 þ bC3 þ bC4

W 0ð0Þ=b ¼ C2 þ C4 ¼ C2 þ bC3 � bC4

W 00ð0Þ=b2 ¼ �C1 þ C3 ¼ �C1 þ bC3 þ bC4

W 000ð0Þ=b3 ¼ �C2 þ C4 ¼ �C2 þ bC3 � bC4

ð21Þ
From Eqs. (16) and (21) we know that C1 represents the central solution of displacement (at x ¼ xm), C3

represents the boundary solution of displacement caused by boundary constraints, C2b represents the

central solution of slope, and C4b represents the boundary solution of slope. Moreover, C1 and C3 also

separate W 00 into central and boundary solutions, and C2 and C4 also separate W 000 into central and

boundary solutions. Furthermore, bC3 represents the boundary solution caused by the boundary constraint

at x ¼ L, and bC4 represents the boundary solution caused by the boundary constraint at x ¼ 0. In other

words, solving the four algebraic equations in Eq. (20) results in answers for the four unknowns W ð0Þ,
W 0ð0Þ, W 00ð0Þ, and W 000ð0Þ with each one being decomposed into two (or three) parts, as shown in Eq. (21).



Fig. 7. Central and boundary solutions of the eighth mode shape of the 22
00 · 100 · 0.2500

cantilever with a symmetric center crack

obtained using one curve-fitting process for 06 x6L: (a) C2 and C4, (b) C1 and C3, (c) bC4, and (d) bC3.
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It follows from Eqs. (21) and (8) that the maximum elastic energy per unit length, P, is given by
P ¼ 1
2
EIW 00ð0Þ2 ¼ 1

2
EIðC3 � C1Þ2b4 ¼ 1

2
mX2ðC3 � C1Þ2 ð22Þ
Moreover, under steady-state harmonic vibration the maximum kinetic energy per unit length, K, is given
by
K ¼ 1
2
mðW ð0ÞXÞ2 ¼ 1

2
mX2ðC3 þ C1Þ2 ð23Þ
Hence it follows from Eqs. (21)–(23) that the difference between these two energy densities is
K �P

2mX2
¼ C1C3 ¼ C1

bC3 þ C1
bC4 ð24Þ
which shows that C1C3 is proportional to K �P. It follows from Eq. (24) that, if b is large, the boundary

solution C3 should be zero and hence K �P ¼ 0 at a point away from boundaries. Because a small damage

to a beam introduces a new boundary point to the structure, this is a phenomenon useful for identifying

damage locations. Moreover, it can be shown that the integral of K around a boundary point is equal to the

integral of P around the same boundary point (Pai and Young, 2001). In other words, the kinetic energy is

locally balanced by the elastic energy, i.e.,
Z XþD2

X�D1

ðK �PÞdx ¼ 0 ð25Þ



Fig. 8. Central and boundary solutions of the 2100 Hz ODS without crack but an external force at x ¼ 10:98100: (a) C2 and C4, (b) C1

and C3, (c) bC4, and (d) bC3.
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where x ¼ X is the location of a boundary point, and Di can be determined by examining the distribution of

K �P. If X ¼ D1 ¼ D2 ¼ L=2 is used, it is always true for any intact or damaged beam. In other words, one

can check the energy balance within a local area of a large structure to estimate the degree of damage,

without knowing the deformation of the whole structure or the system boundary conditions.

The sectional standard deviation (SSD) and standard deviation (SD) of the fitting process can also be

used to monitor the accuracy of curve-fitting and hence reveal damage locations. The SSD is computed as
SSD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼�N ½W ð�xiÞ � Y ð�xiÞ�2=ð2N þ 1Þ

q
Wmax

ð26Þ
where Wmax denotes the maximum of W . The overall standard deviation SD is computed after the Ci for

every point on the beam are obtained, and it is computed as
SD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1½W ðxmÞ � Y ðxmÞ�2=M

q
Wmax

ð27Þ
where M is the total number of points measured along the beam.

The wavenumber b in Eq. (16) needs to be estimated before using the linear sliding-window least-squares
method shown in Eqs. (18)–(20). To determine the wavenumber b for a high-frequency deflection shape one



Fig. 9. Central and boundary solutions of the 2100 Hz ODS without crack but an external moment at x ¼ 10:98100: (a) C2 and C4, (b) C1

and C3, (c) bC4, and (d) bC3.
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can plot the experimental ODS, pick up a length ~L covering n times of the wavelength k, and obtain
b ¼ 2pn=~L. For a low-frequency deflection shape, it is difficult to obtain an accurate estimation of b from

the ODS using this approach, but one can use a non-linear curve-fitting method to improve the estimation

of b (Pai and Jin, 2000). Numerical and experimental results show that the proposed method for extracting

boundary solutions requires an accurate estimation of b only if it is a high-frequency ODS. However, if the

estimated b is not accurate, the sectional standard deviation and boundary solutions will show periodic

change. Hence, it is easy to know whether the estimated b is correct, and, if necessary, one can revise the

estimation and rerun the signal processing.
5. Numerical simulations

Next we perform numerical simulations of dynamic characteristics, ODSs, damage detection, and
identification of boundary conditions of beams.

5.1. Dynamic characteristics

We consider the beam shown in Fig. 2(a) with L ¼ 2200, b ¼ 100, h ¼ 0:2500, aþ c=2 ¼ L=2, c ¼ 0:03900, e ¼
0:2h, Young�s modulus E ¼ 10:6� 106 psi, Poisson�s ratio m ¼ 0:33, and a mass density q ¼ 5:37 slug/ft3.



Fig. 10. Central and boundary solutions of the 2100 Hz ODS without crack but an external moment �M at x ¼ 1000 and an external

moment M at x ¼ 1200: (a) C2 and C4, (b) C1 and C3, (c) bC4, and (d) bC3.

3066 P.F. Pai et al. / International Journal of Solids and Structures 41 (2004) 3053–3080
Moreover, we consider clamped-free boundary conditions, i.e., s1 ¼ s2 ¼ 0. Using the spectral element

method shown in Section 3.2 we obtain the first 10 natural frequencies to be 16.859, 105.18, 296.22, 577.25,
959.57, 1425.6, 2002.1, 2651.1, 3423.7, 4253.8 Hz. Fig. 3 shows the eighth /, /0, /00, and /000, where there is

no data point representing the slotted segment because the slot width c is so small. We note that /0 and /000

are discontinuous at x ¼ L=2, but / and /00 are continuous; however, the discontinuity of /000 is small. The

discontinuity of /0 is mainly due to the action of the two concentrated moments at x ¼ a and x ¼ aþ c, as
shown by Eq. (4). The discontinuity of /000 is due to the action of the distributed load between at x ¼ a and

x ¼ aþ c caused by the inertia force, as shown by Eq. (4). In other words, if the crack width c is very small,

we have
wða�Þ ¼ wðaþ cþÞ; w0ða�Þ 6¼ w0ðaþ cþÞ; w00ða�Þ ¼ w00ðaþ cþÞ;
w000ða�Þ 6¼ w000ðaþ cþÞ

ð28Þ
Hence, the beam in Fig. 2(a) can be modeled as that in Fig. 2(b) using two beam elements and two springs

to account for the slot with
ŝ1 ¼
�cEI1W ivðaþÞ

W ðaþÞ ¼ �cEI1b
4W ðaþÞ

W ðaþÞ ¼ �cm1X
2; ŝ2 ¼

EI1W 00ðaþÞ
W 0ðaþ cþÞ � W 0ða�Þ ¼

EI1
c

ð29Þ



Fig. 11. Central and boundary solutions and damage detection curves of the eighth mode shape with a symmetric center crack and

0.05% random noise added: (a) C2 and C4, (b) C1 and C3, (c) bC4, (d) bC3, (e) W (dots), W 0=b (¼ C2 þ C4, thin line), W 00=b2 (¼ C3 � C1,

broken line), and W 000=b3 (¼ C4 � C2, thick line), (f) SSD, (g) C4, and (h) C1C3.
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Here ŝ1 is the equivalent linear spring constant accounting for the inertia force of the slotted segment,

m1 � mðh� 2eÞ=h is the mass per unit length of the slotted segment, and ŝ2 is the equivalent torsional spring
constant accounting for the bending stiffness of the slotted segment. Using this two-element model we
obtain the first ten natural frequencies to be 16.905, 105.18, 296.27, 577.25, 962.98, 1425.6, 2009.1, 2651.1,

3435.8, 4253.8 Hz. Apparently, the model shown in Fig. 2(b) represents the damaged beam well because the

xi, i ¼ 2; 4; 6; 8; 10 are exact, and the errors of xi, i ¼ 1; 3; 5; 7; 9 are less than 0.4%, which is because the

two concentrated forces at x ¼ a and x ¼ aþ c (see Eq. (4)) are not accounted for in the model shown in

Fig. 2(b) but they are non-zero for odd modes around x ¼ L=2.
Although the stress concentration around a sudden change of cross section increases the bending cur-

vature and makes damage effects more significant, it is difficult to estimate the stress concentration because

it is a complex function of size, geometry, and other factors. Hence, the stress concentration effect is
neglected in the numerical simulations.

Fig. 4 compares the seventh and eighth mode shapes, /7 and /8, with the 2100 Hz ODS with an exci-

tation force applied at x ¼ að¼ ðL� cÞ=2Þ. Although x7 ¼ 2002:1 Hz and x8 ¼ 2651:1 Hz, the 2100 Hz

ODS is closer to /8 because the excitation is very close to the node of /7 at x ¼ L=2. However, the two

peaks of the ODS around x ¼ L=2 with different magnitudes indicate that /7 has non-trivial contribution

because X is close to x7. Moreover, if the excitation is a 2100 Hz moment at x ¼ a, the ODS will be



Fig. 11 (continued)

3068 P.F. Pai et al. / International Journal of Solids and Structures 41 (2004) 3053–3080
dominated by /7 because /
0
7ðaÞ 6¼ 0 and X is close to x7. In other words, the shape of an ODS depends on

the frequency, location, and type of excitation.
If there is no damage (i.e., e ¼ 0) and the beam is uniform, Fig. 5(a) shows the W , W 0, W 00, and W 000 with a

2100 Hz excitation force at x ¼ a, and Fig. 5(b) shows the ODS with a 2100 Hz excitation moment at x ¼ a.
The concentrated external force causes the cusp of W 00 and the discontinuity of W 000, and the concentrated

external moment causes the cusp ofW 0 and the discontinuity ofW 00. The big discontinuity ofW 000 is due to the

large transverse force required to excite the ODS that is similar to /8 but the excitation frequency X is away

from x8. The small discontinuity of W 00 is due to the small moment required to excite the ODS that is similar

to /7 and the excitation frequency X is close to x7. If W is obtained using Eq. (9) with 100 mode shapes, the

cusp on W 00 and the discontinuity on W 000 in Fig. 5(a) disappear because /i, /
0
i, /

00
i , and /000

i are continuous
functions. Hence, Eqs. (7) and (9) are not really exact. Fig. 3 shows that a crack causes the discontinuity on

/0 (or W 0) and /000 (or W 000). Because the influences of different external loads and damage on ODSs have

different characters, it should be possible to identify them separately using ODSs and their derivatives.
5.2. Damage detection

Fig. 6 shows the results obtained using the BED method shown in Section 4 to process the eighth mode
shape with aþ c=2 ¼ L=2, c ¼ 0:03900, and 2e=h ¼ 0:4. Two curve-fitting processes are performed for



Table 1

Different boundary conditions of high-frequency ODSs around x ¼ 0

General

(h1 þ h2 ¼ 90�)
Clamped

(h1 ¼ h2 ¼ 45�)
Hinged (h1 ¼ 90�,
h2 ¼ 0�)

Sliding (h1 ¼ 0�,
h2 ¼ 90�)

Free

(h1 ¼ h2 ¼ 45�)

C1 �A cosðbxþ h1Þ �A cosðbxþ 45�Þ A sinðbxÞ �A cosðbxÞ �A cosðbxþ 45�Þ
C2 A cosðbx� h2Þ A cosðbx� 45�Þ A cosðbxÞ A sinðbxÞ A cosðbx� 45�Þ
C3

~Ae�bx Affiffi
2

p e�bx 0 0 � Affiffi
2

p e�bx

C4 �~Ae�bx � Affiffi
2

p e�bx 0 0 Affiffi
2

p e�bxbC3 ¼ C3þC4

2

� �
0 0 0 0 0bC4 ¼ C3�C4

2

� �
~Ae�bx Affiffi

2
p e�bx 0 0 � Affiffi

2
p e�bx

W ð¼ C1 þ C3Þx¼0
~A� A cos h1 0 0 �A �

ffiffiffi
2

p
A

W 0=bð¼ C2 þ C4Þx¼0 A cos h2 � ~A 0 A 0
ffiffiffi
2

p
A

W 00=b2ð¼ C3 � C1Þx¼0
~Aþ A cos h1

ffiffiffi
2

p
A 0 A 0

W 000=b3ð¼ C4 � C2Þx¼0 �A cos h2 � ~A �
ffiffiffi
2

p
A �A 0 0

Fig. 12. Damage detection curves of the eighth mode shape with two cracks having c ¼ 0:03900 and 2e ¼ 0:4h at x ¼ 0:1L and x ¼ 0:5L
and 0.05% random noise added: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line), (b) SSD, (c) bC4, and

(d) bC3.
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06 x6 a and aþ c6 x6 L, respectively. The maximum SSD is less than 10�13. The results show that the
central solutions C1 and C2 are smooth harmonic functions, the boundary solution C3 is continuous but has



Fig. 13. Boundary condition detection curves of the eighth mode shape with one crack having c ¼ 0:0100 and 2e ¼ 0:4h at x ¼ 0 and one

crack having c ¼ 0:03900 and 2e ¼ 0:4h at x ¼ 0:5L and 0.05% random noise added: (a) C2 and C4, (b) C1 and C3, (c) W (dots), W 0=b
(thin line), W 00=b2 (broken line), and W 000=b3 (thick line), and (d) h1 and h2.
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a cusp at the location of damage, the boundary solutions C4, bC3 and bC4 are discontinuous at the damage

location. Because C4 is discontinuous, it follows from Eq. (21) that W 0 and W 000 are discontinuous. We note

that the right-end boundary solution bC3 and the left-end boundary solution bC4 are well separated. Because

e ¼ 0:2h, the damage is considered to be big, but the damage indicators shown in Fig. 6 are not very

significant, especially if noise exists. If only one curve-fitting process is performed for the whole beam

06 x6 L, Fig. 7 shows the results. We note that all Ci and bCj are continuous because the four continuous
functions shown in Eq. (16) are used in the curve-fitting. However, because W 0 and W 000 are discontinuous,

the use of continuous functions to fit such a discontinuous function results in Gibbs� phenomenon. We note

that the significant sign changes of C4, bC3 and bC4 and the peak of C3 at the damage location in Fig. 7 are

caused by Gibbs� phenomenon. Gibbs� phenomenon also makes C1 and C2 non-smooth. Hence, Gibbs�
phenomenon actually makes the identification of damage easier.

Fig. 8 shows the results obtained by processing the 2100 Hz ODS shown in Fig. 5(a). We note that the

styles of boundary and central solutions are very different from those in Fig. 7 because the discontinuity is

due to a shear force. Fig. 9 shows the results obtained by processing the 2100 Hz ODS shown in Fig. 5(b).
We note that the styles of boundary and central solutions are very different from those in Figs. 7 and 8

because the discontinuity is due to a bending moment. Fig. 10 shows the results obtained by processing the

2100 Hz ODS under a moment �M at x ¼ 1000 and a momentM at x ¼ 1200. The loading condition is similar

to that caused by a 2
00
long PZT patch. We note that the styles of boundary and central solutions are more
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complex than those in Figs. 7–9 because the discontinuities are due to two bending moments. Hence, it is

possible to distinguish boundary solutions due to damage, actual boundaries, external forces, and external

bending moments from each other.

Because ODSs obtained using a scanning laser vibrometer always contain noise due to spectral noise and
other factors, we also consider ODSs with noise. Fig. 11 shows the curve-fitted results obtained by pro-

cessing the eighth mode shape with aþ c=2 ¼ L=2, c ¼ 0:03900, 2e=h ¼ 0:4 and 0.05% uniformly distributed

random noise added. N ¼ 5 (see Eq. (18)) and Dx ¼ L=200 (i.e., the space between two adjacent sample
Fig. 14. A free-clamped beam with an asymmetric center crack.

Fig. 15. Damage detection curves of the 1295 Hz ODS of the free-clamped 22
00 · 100 · 0.2500

aluminum beam having a crack with

c ¼ 0:03900 and e ¼ 0:15h at x ¼ 1100: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line), (b) SSD, (c) C4, and

(d) C1C3.



Fig. 16. Damage detection curves of the 2612.5 Hz ODS of the clamped (without tape)-clamped 21.1
00 · 100 · 0.2500

aluminum beam

having a crack with c ¼ 0:03900 and e ¼ 0:15h at x ¼ 10:100: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line),

(b) SSD, (c) C4, and (d) C1C3.
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points) are used. The C3, C4, bC3 and bC4 still clearly indicate the damage location, but C4, bC3 and bC4 are
rough. The SSD and C1C3 also clearly indicate the damage location. The thin lines in Fig. 11(f)–(h) are

obtained using N ¼ 5 and Dx ¼ 2L=200, i.e., doubled the sliding-window length 2NDx.
Fig. 12 shows the curve-fitted results obtained by processing the eighth mode shape with two cracks

having c ¼ 0:03900 and 2e ¼ 0:4h at x ¼ 0:1L and x ¼ 0:5L. Although the left crack is within the boundary

zone, the sign change of the right-end boundary solution bC3 clearly indicate the crack location.

We note that, if Eq. (16) is used to fit the whole ODS (or a selected section) without using a sliding

window, one can only obtain one value for each of the four coefficients ci. Then, the fitted ODS is an

average representation of the actual ODS, and no local variation can be revealed. If a cubic polynomial is
used in the curve-fitting with the use of a sliding window, one can show that
W ð�xÞ ¼ D1 þ D2�xþ D3�x2 þ D4�x3

W ð0Þ ¼ D1; W 0ð0Þ ¼ D2; W 00ð0Þ ¼ 2D3; W 000ð0Þ ¼ 6D4

ð30Þ
We note that boundary solutions cannot be separated from the central solutions. Moreover, the Di have

values of different orders and are difficult to be compared in one figure.



Fig. 18. A free-clamped aluminum beam with three cracks.

Fig. 17. Damage detection curves of the 2612.5 Hz ODS of the clamped (with tape)-clamped 21.1
00 · 100 · 0.2500

aluminum beam having a

crack with c ¼ 0:03900 and e ¼ 0:15h at x ¼ 10:100: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line), (b) SSD,

(c) C4, and (d) C1C3.

P.F. Pai et al. / International Journal of Solids and Structures 41 (2004) 3053–3080 3073
5.3. Identification of boundary conditions

For one general and four perfect boundary conditions, Table 1 shows boundary and central solutions of

high-frequency ODSs around the boundary at x ¼ 0. We note that, for any boundary condition around

x ¼ 0, C1 ¼ �A cosðbxþ h1Þ, C2 ¼ A cosðbx� h2Þ, and h1 þ h2 ¼ 90�. For the four perfect boundary con-

ditions, h1 and h2 are equal to 0�, 45� or 90�, as shown in Table 1. Because a general boundary point can be

connected to a linear spring, a torsional spring, a translational mass, a rotational mass, a linear damper, a



Fig. 19. Damage detection curves of the 1556.25 Hz ODS of the free-clamped 23.94
00 · 0.74300 · 0.18800

beam with three cracks using

N ¼ 5 and Dx ¼ 2L=501: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line), (b) SSD, (c) C4, and (d) C1C3.
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torsional damper, an external force, and/or an external moment, the amplitude of boundary solutions, ~A,
may not be equal to A=

ffiffiffi
2

p
and h1 and h2 may not be equal to 0�, 45� or 90� although h1 þ h2 ¼ 90�.

Fig. 13 shows the curve-fitted results obtained by processing the eighth mode shape with a crack within

06 x6 0:0100 and 2e=h ¼ 0:4 and another crack having c ¼ 0:03900, 2e=h ¼ 0:4, aþ c=2 ¼ L=2 and 0.05%

noise added. We note that, although the crack depth 2e is 40% of the thickness, the boundary and central

solutions do not deviate much from those of a perfectly clamped condition shown in Table 1, except that

W 0 has a small value at x ¼ 0. Hence, it is difficult to identify actual boundary conditions using boundary

or central solutions. However, h1 ¼ 47:08� > 45� and h2 ¼ 42:84� < 45� clearly indicate that the boundary

is not perfectly clamped, which is due to the crack at x ¼ 0. Moreover, the sudden change of h1 and h2
around x ¼ L=2 also indicate the second crack. Because C1 and C2 are smoother than C3, C4, bC3, and bC4

(see Fig. 11), the extraction of h1 and h2 from C1 and C2 are not sensitive to the presence of noise. For

example, when 0.5% random noise is added to the mode shape, the distributions of h1 and h2 are still able
to reveal the non-perfect boundary at x ¼ 0 and the crack at x ¼ L=2 but all other boundary and central

solutions are too shaky to reveal the damage. If the boundary point at x ¼ 0 is known and can be reached

for measurement, one can use hi to check whether there is any damage. If the boundary point at x ¼ 0 is

unknown and/or cannot be reached for measurement, one can also use hi to estimate the location of the left

end.



Fig. 20. Damage detection curves of the 1556.25 Hz ODS of the free-clamped 23.94
00 · 0.74300 · 0.18800

beam with three cracks using

N ¼ 5 and Dx ¼ 3L=501: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line), (b) SSD, (c) C4, (d) C1C3, (e) C2

and C4, (f) C1 and C3, (g) bC4, and (h) bC3.
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6. Experimental results

Fig. 14 shows a free-clamped 22
00 · 100 · 0.2500

aluminum beam with a center crack having a crack width

c ¼ 0:03900 and a crack depth e ¼ 0:037500ð¼ 0:15hÞ. Fig. 15 shows the results obtained using the BED

method with N ¼ 5 (see Eq. (18)) and Dx ¼ 2L=250 (i.e., the space between two adjacent sample points) to

process the 1295 Hz ODS, which was excited by the PZT patch shown in Fig. 14 and was measured at 250

(¼ M , see Eq. (27)) points using the scanning laser vibrometer from the backside of the beam. The thin lines

in Fig. 15(b)–(d) are obtained using N ¼ 5 and Dx ¼ 5L=250. Fig. 15(a) shows that it is difficult to find the
crack by examining the ODS W (¼ C1 þ C3, dots), W 0=b (¼ C2 þ C4, thin line), W 00=b2 (¼ C3 � C1, broken

line), or W 000=b3 (¼ C4 � C2, thick line). On the other hand, the peak of SSD, the dimple of C1C3, and the

sign change of C4 at x ¼ 0:5L clearly indicate the crack location. The peak of SSD around x ¼ L is due to

the bending moment from the PZT patch. The peak of SSD around x ¼ 0:45L when Dx ¼ 5L=250 is caused

by coupling with the peak at x ¼ 0:5L (see the side-lobes in Fig. 11(f)) and there is no damage at x ¼ 0:45L
because it becomes relatively small when Dx is reduced to 2L=250. Because the first measurement point is

actually about 0.1
00
to the right of the free end, requiring h1 ¼ 45� and matching the theoretical C1 function

of a free end shown in Table 1 with the curve-fitted C1 curve indicates that the free end is at x ¼ �0:100, as it
should be.



Fig. 20 (continued)
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Then a 0.9
00
section of the left end was clamped using two steel plates in a way similar to the right

clamped end. Fig. 16 shows the curve-fitted results obtained by processing the 2612.5 Hz ODS using N ¼ 5

and Dx ¼ 3L=615. The thin lines in Fig. 16(b)–(d) are obtained using N ¼ 5 and Dx ¼ 6L=615. The fre-

quency was picked up from the seventh peak on the averaged FRF obtained using a 0–20 kHz periodic

chirp excitation. Again the peak of SSD, the dimple of C1C3, and the sign change of C4 at x ¼ 0:474L clearly

indicate the crack location. Because the first measurement point is actually about 0.1
00
to the right of the left

clamped end, requiring h1 ¼ 45� and matching the theoretical C1 function of a clamped end shown in Table
1 with the curve-fitted C1 curve indicates that the free end is at x ¼ �0:600, instead of x ¼ �0:100. In other

words, the left end is not perfectly clamped, which was believed to be due to non-perfect contact between

the two steel plates and the beam. The peak of SSD, the roughness of C1C3, and the sign change of C4

around x ¼ 0 also indicate a non-perfect boundary point. To improve the contact two pieces of duck tape

were put between the two steel plates and the beam and a larger clamping force was applied, which resulted

in the increase of the seventh peak on the average FRF to 2687.5 Hz. Fig. 17 shows the curve-fitted results

obtained by processing the 2687.5 Hz ODS using N ¼ 5 and Dx ¼ 3L=613. The thin lines in Fig. 17(b)–(d)

are obtained using N ¼ 5 and Dx ¼ 6L=613. Again the peak of SSD, the dimple of C1C3, and the sign
change of C4 at x ¼ 0:474L clearly indicate the crack location. Requiring h1 ¼ 45� and matching the the-

oretical C1 function of a clamped end with the curve-fitted C1 curve indicates that the free end is at

x ¼ �0:300, instead of x ¼ �0:100. In other words, the left end was still not perfectly clamped, which was

believed to be due to the flexibility of the duck tape. If there is a crack at x ¼ 0, the predicted left end will be
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at x < �0:300. However, the peak of SSD around x ¼ 0 in Fig. 16(b) is eliminated in Fig. 17(b) because of a

better contact. These tests show that even a perfectly clamped boundary condition is difficult to be realized

in experiment.

Fig. 18 shows a free-clamped 23.94
00 · 0.74300 · 0.18800

aluminum beam with three cracks having a crack
width c ¼ 0:03900 and crack depths e ¼ 0:03100ð¼ 0:16hÞ, e ¼ 0:05300ð¼ 0:28hÞ, and e ¼ 0:02500ð¼ 0:13hÞ,
respectively. Fig. 19 shows the results obtained using the BED method with N ¼ 5 and Dx ¼ 2L=501 to

process the 1556.25 Hz ODS, and Fig. 20 is obtained using N ¼ 5 and Dx ¼ 3L=501. The thin lines in Figs.

19(b)–(d) and 20(b)–(d) are obtained using N ¼ 5 and Dx ¼ 6L=501. Figs. 19(a) and 20(a) show that it is

difficult to locate the cracks, especially when the sliding-window length 2NDx is large. On the other hand,

the peaks of SSD and C3, the dimples of C1C3, the sign changes of C4, bC3, bC4 clearly indicate the three crack

locations. Figs. 19(b)–(d) and 20(b)–(d) show that comparing damage location curves obtained using two

different sliding-window lengths makes it easy to find damage locations. Although increase of the sliding-
window length makes the peaks of SSD and the sign changes of C4 clear, it reduces the dimples of C1C3.

Hence, there should be an optimum sliding-window length for revealing damages. Experimental and

numerical results showed that, if noise is small, a sliding-window length ð2NDxÞ of k=4 works best for

locating and estimating cracks (Pai et al., 2003). However, because actual noise is usually unknown, it is
Fig. 22. A free-clamped aluminum beam with four cracks.

Fig. 21. The 3525.78 Hz traveling ODS.



Fig. 23. Damage detection curves of the 1675 Hz ODS of the free-clamped 28.8
00 · 0.74300 · 0.18800

beam with four cracks using N ¼ 5

and Dx ¼ 2L=601: (a) W (dots), W 0=b (thin line), W 00=b2 (broken line), and W 000=b3 (thick line), (b) SSD, (c) C4, and (d) C1C3.
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better to process experimental data using at least two different sliding-window lengths. The peak of SSD

around x ¼ 0 is due to the first 6.06
00
beam segment was gradually distorted by twisting from x ¼ 6:0600 to

x ¼ 0 by about 5�. The actual left end is at x ¼ �0:1500, but requiring h1 ¼ 45� and matching the theoretical

C1 function of a free end with the curve-fitted C1 curve indicates that the free end is at x ¼ �0:0900. This
inaccuracy is due to the beam distortion. All the three cracks can be detected by the damage detection

curves of this 1556.25 Hz ODS because each crack is close to a peak of the ODS. If there are cracks around

the nodes of this ODS, they will be not revealed by the damage detection curves. Hence, at least two ODSs

with peaks covering the whole beam need to be processed in order to reveal all possible defects.

An alternative approach is to examine just one traveling ODS because the peaks (and nodes) of a

traveling ODS move. Eqs. (7) and (9) indicate that an easy way to have traveling ODSs is to create non-
uniform distribution of damping properties. Two pieces of 6

00 · 0.74300
3M-DF-2552 damping foil were put

between cracks #1 and #2 and cracks #2 and #3 shown in Fig. 18. The 3M-DF-2552 consists of a room

temperature pressure sensitive viscoelastic polymer (0.005
00
thick) on a dead soft aluminum foil (0.01

00

thick), and the mass density is 0.17 lb/ft2. Fig. 21 shows the 3525.78 Hz ODS at different time instants; it is

apparently a traveling wave. Experimental results show that it is easier to obtain high-frequency traveling

ODSs than low-frequency ones, and ODSs over the left beam segment without damping foil only show

standing waves. We note that, although one can process a profile of a traveling ODS when its peaks move
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close to the global nodes to detect damage around the global nodes, the damage detection curves are not

clear because such a profile usually has a small amplitude with significant noise, as shown in Fig. 21.

Fig. 22 shows a free-clamped 28.8
00 · 0.74300 · 0.18800

aluminum beam with four cracks having a crack

width c ¼ 0:03900 and crack depths e ¼ 0:05300ð¼ 0:28hÞ, e ¼ 0:04600ð¼ 0:24hÞ, e ¼ 0:04600ð¼ 0:24hÞ, and
e ¼ 0:037500ð¼ 0:20hÞ, respectively. Fig. 23 shows the results obtained using the BED method with N ¼ 5

and Dx ¼ 2L=601 to process the 1675 Hz ODS. The thin lines in Figs. 23(b)–(d) are obtained using N ¼ 5

and Dx ¼ 5L=601. Again, the peaks of SSD, the dimples of C1C3, the sign changes of C4 clearly indicate the

four crack locations. The actual left end is at x ¼ �0:1100, and requiring h1 ¼ 45� and matching the theo-

retical C1 function of a free end with the curve-fitted C1 curve indicates that the free end is at x ¼ �0:1300.
This inaccuracy is due to crack #1 being close to x ¼ 0. We note that, although cracks #1 and #2 are close

to the left boundary point, the damage location curves SSD and C1C3 still show the damage locations

clearly, and they are very similar to the numerical simulation results shown in Fig. 12.
The cracks that the BED method can locate and estimate has been experimentally shown to be cracks

with a crack depth eP 0:05h (Pai et al., 2003). However, we point out here that, if a crack is irregular or not

perpendicular to the x-axis, the BED still works but the corresponding torsional deformation will affect the

accuracy. Moreover, if the beam width is large, it is better to treat the structure as a two-dimensional (2D)

structure. For 2D structures, a similar method can be derived for damage detection and boundary iden-

tification, which will be reported later.
7. Concluding remarks

A signal decomposition method for extracting boundary effects from an ODS is presented. The method

processes an experimental ODS using a sliding-window least-squares curve-fitting technique to separate

boundary and central solutions. The extracted boundary solutions can be used for finding damage loca-

tions, and the central solutions can be used for identifying actual boundary conditions. Numerical simu-
lations and experimental results validate the proposed method for 1D structures.
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